报告人:孙颀彧教授 (美国中佛罗里达大学)
报告时间:2025年6月17日(星期二) 15:30-16:30
报告地点:理学楼C220
报告摘要:Taylor expansion and Fourier expansion have been widely used to represent functions. The question to be discussed in this talk is whether there is some analog for nonlinear dynamic systems. In particular, we consider Carlemen linearization and Carleman-Fourier linearization of nonlinear dynamic systems and show that the primary block of the finite-section approach has exponential convergence to the solution of the original dynamic system.
报告人简介:
孙颀彧,美国中佛罗里达大学数学系教授。主要从事傅里叶分析、小波分析、框架理论、信号采样和处理等方面的研究工作。在国际顶尖权威杂志 Memoirs of American Mathematical Society, Transaction of American Mathematical Society, Applied and Computational Harmonic Analysis, Advances in Computational Mathematics, IEEE Transaction on Information Theory, IEEE Transaction on Signal Processing, Journal of Fourier Analysis and Applications等发表论文100多篇,被引3000多次。先后担任Frontiers in Applied Mathematics and Statistics, Sampling Theory in Signal and Imaging Processing, Numerical Functional Analysis and Optimization, Advances in Computational Mathematics等期刊的编委。